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INJECTIVE AND FLAT COVERS, 
ENVELOPES AND RESOLVENTS 

BY 

E D G A R  E. E N O C H S  

ABSTRACT 

Using the dual of a categorical definition of an injective envelope,  injective 
covers can be defined. For a ring R, every left R -modu le  is shown to have an 
injective cover if and only if R is left noetherian. Flat envelopes are defined and 
shown to exist for all modules over a regular local ring of dimension 2. Using 
injective covers, minimal injective resolvents can be defined. 

I. Introduction 

An injective enve lope  of a left R - m o d u l e  M can be  charac te r ized  as a l inear 

map  ~b : M ~ E into an inject ive R - m o d u l e  E with two proper t ies :  

(a) Any  d iagram M "b , E  \ .  
E '  

where  E '  is an inject ive left R - m o d u l e  can be comple t ed  (or equivalent ly ,  4> is 

an injection).  

(b) The  d iag ram 
4, 

M > E  

E 

can be  comple t ed  only by a u t o m o r p h i s m s  of  E (equivalently,  E is an essential  

extension of &(M)) .  

Dually,  an injective cover  of  M is a l inear  m a p  ~b:E ~ M with E inject ive 

such that:  
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(1) Any diagram 
E t  

\ 
,l, 

E >M 

with E '  injective can be completed. 

E 
(2) The diagram 

E ~ ; M  

can be completed only by automorphisms of E. 

Note that an injective cover of M (if it exists) is unique up to isomorphism. 

Also note that the kernel of an injective cover E ~ M contains no non-zero 

injective modules. For any module M over a Dedekind domain, the natural 

embedding E---, M of the largest divisible submodule E of M is the injective 

cover of M. If ~b : E ---, M satisfies (1) and perhaps not (2), it is called an injective 

precover. An injective preenvelope is defined similarly. By analogy, flat en- 

velopes and covers, projective envelopes and covers, and other types of covers 

and envelopes can be defined. Note that although this definition of a projective 

cover is not the usual one [1], it is in agreement with it. One object of this paper 

is to show that left noetherian rings are precisely those rings for which every left 

module has an injective cover. The bulk of the proof consists in deducing the 
existence of an injective cover from the existence of a precover. Some of the 

proofs will apply to other types of covers and envelopes (e.g., flat covers). 

2. Injective covers 

We first show: 

PROPOSITION 2.1. I f  R is a ring such that every left R-module has an injective 
precover, then R is left noetherian. 

PRooF. It suffices to show that for any family (E,), i E I of injective left 

R-modules, @Ei is injective. If E---,E)E, is a precover and / ~  I then 

completing 

E, 
! 

@ 

E , ~ E ,  
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with Ej ~ @ Ei the canonical injective gives rise to a map @ Ei ~ E with the 

composition @ E, --~ E ~ @ E~ the identity. Hence @ E~ is isomorphic to a 

direct summand of E and so is injective. 
The next result in different terms appears in Teply [8]. 

PROPOSITION 2.2. (Teply). I f  R is left noetherian, every left R-module M has an 
injective precover. 

PROOi:. Since R is left noetherian, there is a set X of injective left 

R-modules such that any injective left R-module is the direct sum of modules 

each isomorphic to an element of X [4]. Hence F---> M with F injective will be a 

precover only if 

.E 

F ~' ~ M 

can be completed for each E ~ X. For E ~ X let E* be the sum of Hom(E, M) 

copies of E and let E*--->M map (x,), ~b C Hom(E, M) onto X ~b(x,). For any 

map r ' : E --> M, 

E 

if* ~ M 

can be completed by mapping E onto the ~b' component of E*. But then @ E* 

(with the sum taken over E E X) and the map (~ E* ---> M which comes from the 
maps above give an injective precover of M. 

THEOREM 2.1. A ring R is left noetherian if and only if every left R-module 
has an injective cover. 

The "only if" part is Proposition 2.1, so assuming R is left noetherian, the rest 

of the proof will consist in using the injective precovers guaranteed by 

Proposition 2.2 to find injective covers. R being left noetherian is used in noting 

that it implies that inductive limits of injective left R-modules are injective. 

We break the proof into three lemmas. The motivation for the first two 

lemmas is the observation that if E---* M is an injective cover and F--~ M is a 

precover, then any way we complete 
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E 

\ 
F ~M 

the map E ~ F must be an injection (compositing with the appropriate map 

F---~E is an automorphism of E) .  And so, Lemmas 2.1 and 2.2 guarantee an 

injective precover E ~ M with this additional property. 

LE~X~A 2.1. I f  E ~ M is a linear map where E is injective, then there exists an 

injective precover F ~ M and a map f :  E ~ F completing 

E . \  
F ~ M  

such that for any commutative diagram 

F ~ M  

where G --~ M is also a precover, ker(g of)  = ker(f)  (i.e. the kernel o f f  is in some 

sense maximal).  

PROOf. Suppose the conclusion is not true. Then any such f doesn't  have the 

desired property. Hence  we can construct a diagram 

E ~M 

with ker (E ~ Fn)~ker(E ~ F.+I) for each n => 1 and with each Fn ~ M a 
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precover. Letting F~ = lim F, (oJ is the first infinite ordinal) we see that F~ is 

injective and in fact F , o ~ M  is an injective precover. Also 

ker (E ~ F . ) ~ k e r ( E  ~ F~) for each n. But the map E ~ F~ doesn't  have the 

desired property so there is a precover F~+~---~M and a map F~--->F~§ 

completing 
F~ 

F~+I 

such that ker(E ---> Fo)~ker (E  --> F~+I). Continuing in this fashion we see that for 

any ordinal a we can construct injective precovers F~ --~ M for all/3 < a with 

maps E--~ E~ such that for/3 < v < a, ker(E--> F~)~ker(E--~ F~). If for each/3 

with /3 + 1 < a we choose x~ with x~ ~ ker (E --~ F~), x~ E ker (E --> F~+~) then 

x~ # x~, for distinct/3,/3'. This implies Card(E)  > Card(a)  whenever a is infinite. 

This is clearly impossible. 

LEMMA 2.2. There exists an injective precover E ~ M with the property that [or 

any commutative diagram 

E >M l /  
F 

with F--* M a precover, E ~ F is an injection. 

PROOF. Using Lemma 2.1 we construct a diagram 

E1 >M 

E,  

1 

where for each n => 1, 17,. ~ M is an injective precover and where 
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E. >M 
l J  
EL, 

has proper ty  guaranteed by L e m m a  2.1, i.e. if 

is commutat ive  for sonae injective precover  F---~M then ker(E.--->E.+~)= 

ker(E.  ---> F). Now let E = lim E.  and let E ---> M come from the maps E .  ---> M. 

E---> M is the desired precover  F, for suppose 

E ' : ' M  

i f  
F 

is commutat ive  with F---> M a precover.  If z E E is in the kernel of E ~ F, let 

x E Em map onto z in l i m E ,  = E. Our  assumption on Em ~ Er,+1 applied to 

/ 
shows that Em---~E,~+~ maps x onto 0. Consequently z = 0 in l imE .  = E. 

LEMMA 2.3. I[ d/ : E---> M is an injective precover having the property o[ 

L e m m a  2.2, then xI, : E ---> M is an in]ective cover. 

PROOF. If every map E--~ E completing 

E-----~ M 

y 
E 

is an isomorphism, then we are through, so suppose E---> E is such a map,  but 

not an isomorphism. Then it is easy to see that for a any ordinal number  we can 

construct a commutat ive  diagram 
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Eo ) M 

E~ 

1 

where each E~ = E and where if/3 + 1 < a then E~ ~ Eo+I is not an isomorph- 

ism (but is an injection). Now complete 

lim E~ , M 

1 
E" 

By construction, if /3 < v < a + 1 < a then 

\ /  
E 

consists of injections none of which are surjections. This implies Card(E)_-> 

Card(a)  for all infinite a, so gives a contradiction. 

EXAMPLES. Tom Cheatham and myself have argued that if R is local with 

residue field k, the injective cover of E(k)/k has the form E(k)" for a finite 

n_->l, n > l  can occur but if R = k [ [ x , y ] ] ,  n = l .  This uses Northcott 's 

description of I(k) as the inverse polynomial ring k[x -~, y-l] in [5]. 

3. Flat covers  

The three lemmas of Section 2 allow one to conclude the existence of an 

injective cover from that of a precover if R is left noetherian. If we replace 

injective by flat in the three lemmas, then since the inductive limit of flat left 

R-modules is flat for any ring R, we get: 
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THEOREM 3.1. For any ring R and any left R-module M, if M has a flat 

precover then it has flat cover. 

It is not known whether flat precovers always exist. If R is a domain then 

every module has a torsion free cover [3], hence if R is furthermore Priifer (so 

flat = torsion free), flat covers exist. It seems reasonable to conjecture that they 

exist for any ring. 

By Lazard's thesis every flat module is the inductive limit of projective 

modules over some directed set I. If, for a given ring R there is a "universal" I 

such that every flat module over R is the inductive limit of projective modules 

over I, then it can be shown that all left R-modules have flat precovers, so they 

have covers. For example, if R = Z, then I = N (with the usual order) works. If 

R is a Dedekind domain, there is such an I, but its structure may be more 

complicated. 

Note that for any left R-module M, P--~ M for a projective module P is a 

projective precover of M if and only if P ~ M is surjective. If R is such that flat 

left R-modules are projective (i.e. R is left perfect) we get as a consequence of 

Theorem 3.1 

COROLLARY (Bass). I f  all flat left R-modules are projective, then every left 

R-module  has a projective cover. 

4. Sums of covers and envelopes 

A direct sum of covers may fail to be a precover, or it may be a precover and 

still not be a cover�9 Namely, if for each i E / ,  ~i : E~ --* M~ is a cover, it may be 

possible to complete 

�9 ~ 

d E, j 
by a map which is not an isomorphism. Our first two propositions show when this 

property of covers and envelopes is preserved by countable sums. The necessary 

condition is a sort of T-nilpotency, which when applied to projective covers 

gives the usual T-nilpotency of the radical of a left perfect ring and which when 

applied to injective envelopes in the case of a commutative noetherian ring gives 

another familiar result. 

In the situation above, there is no loss in generality in assuming each M~ is a 

quotient of E~, say NtiS,  and that 0, :E~-->EdS~ is the canonical surjection. 
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PROPOSITION 4.1. If[or each i = 1, 2, 3 , . . . ,  Si C El is a submodule such that 

can be completed only by automorphisms of El, then the same is true of 

OEi 

(*) �9 Ei/O Si 

OE, 

if and only if for each sequence 1 <= kl < k2 < ' ' '  o f  positive integers and maps 

f. : Ek. --~ Ek.§ with im(f,) C Sk.~, and for each x E Ek, there is an m >= 1 such that 

fm~ f,.-, ~ . . . .  f ,(x) = 0. 

PROOF. We argue the necessity and let the k. 's  and f . ' s  be as stated. Define 

cb : 0 El ----> 0 El so that if i ~ k. for all n then ~b I Ei is the identity map and so 

that r I Ek. agrees with the map Ekn ---* Ek. O Eke+, which takes y to (y, - f . ( y ) ) .  

Then ~ completes the diagram (*). Furthermore one checks that if x E Ek, and if 

x is in the image of ~b, say cb((xi))=x, then xi = 0  for i ~ k .  for all n. Also xk, 

must be x and by induction we see that xk. =f.-1 . . . .  of~(x) for n > 1. But 

(xi) E O E, implies x~. = 0 for n sufficiently large. 

For the converse, suppose (b completes (*). Use the matrix notation ~b = (~ij) 

with ~bij : Ej ~ El. Note  that for each i, ~i completes 

E, 
. - - - . . . . .  

E, / S, 

and so is an isomorphism, and that for i~] ,  ~j has its image in Sj. Also (4~J) is 

locally column finite in the sense that for any j and any x E E~, ~ j (x )  = 0 except 

for a finite number of i. Furthermore any collection of 4~,j's satisfying these 

conditions gives a 4~ completing (*). To argue that 4~ is an isomorphism we only 

need find a ~ which is an isomorphism completing (*) and such that ~ o 4~ or 

4~ o 0 is an isomorphism. The argument proceeds by showing that 4~ has a 

triangular decomposition, i.e. it is the product of an upper and lower triangular 

matrix (corresponding to an automorphism of �9 E, ). If 4~ is upper triangular, 

then since its diagonal elements are automorphisms of the 17.,, it's a standard 
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argument that it is invertible, and clearly its inverse satisfies the conditions 

above, so guaranteeing that it corresponds to an automorphism of ~)Ei  of the 

desired type (i.e. making (*) commutative). 

So we construct an upper triangular matrix 0 of the desired form so that 4~ o 0 

is lower triangular. 0 will be defined as an infinite product 01 ~ 02 ~ 03 o . . . .  Let 

- 4 , ; 1 '  - 4 ~ , ' 6 1 ~  - 4 , ; 1 1 , ~ , ~  

0 id 0 

0 0 id 

. . o  

o ~  

o ~  

o ~  

Then ~b o 01 has the form 

l 
id 0 0 - - . ]  

hence define 02 as we defined 0~ but using the second row of (k * 01 and then 

similarly defining 0 3 , " "  it is easy to see that the ij entry of 0 1 ~ 1 7 6 1 7 6  0, is 

constant for n sufficiently large and so the infinite product converges; and if 0 is 

this product it gives the desired automorphism of ~)E1 so that ~b o 0 is lower 

triangular. 

Now assume that ~b is lower triangular and that it has the identities ida, on the 

diagonal. So we have ~b = id~ ,  - K where K is strictly lower triangular and - K 

has ~bii for its ij entry when i > j. Since K is strictly lower triangular the sum 

~ b ' = i d + K + K 2 +  . . -  + K "  + . . .  

is well defined. As a matrix ~b' is (h -1. However we need to argue that it is locally 

column finite. To argue this, given i, let x E E~. The ]i entry of ~b'(x) for j > i is 

with the summation taken over all possible finite sequences j > k, > �9 �9 �9 > kl > 

i. If for an infinite number of j with j > i the sum is non-zero, an easy application 

of the K6nig graph theorem allows us to choose k l <  k2< k3<""  with 

~bk.k._,~ �9 "~ 0 for all m. Letting f, = ~.k._, for n _->2 and f~ = ~ , ,  we 

contradict our hypothesis. 

Using a similar argument we get 

PROPOSITION 4.2. 1.1: [or i = 1, 2, 3 , ' . . ,  Si C Ei is a submodule such that 
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/ .  
S, 

can only be completed by isomorphisms, then the same is true of 

G S, 

if and only if for any sequence 1 <= k~ < k: < . . .  and maps f, : E~. ---) E~.+, such 

that [o (Sk.) = 0 and for any x E Ek,, there is an m >= 1 such that 

f.. of.,_, . . . . .  f ,(x) = O. 

REMARK. We note that the finite counterpart of Proposition 4.1 (respectively 

4.2) holds with the only hypothesis being that 

Ei 

E, 

Ei / Si 
/ 

respectively S, 

E, 

can be completed only by automorphisms for i = 1, 2 , . . . ,  n since we can let 

Ek = 0  for k > n .  

COROLLARY 1. I f / o r  any set, I, Si C Ei is a submodule such that 

7E.,  
S~ 

can be completed only by automorphisms, then 

/ 

can be completed only by injection. 
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PROOF. If 4' completes the above, then for any finite subset K C 1 consider 

By the remark, the vertical composition is an isomorphism. But since this is true 

for any finite K C/, 4) must be an injection. 

COROLLARY 2. ]f for each i E L Mj --> E is a flat envelope and if @ M~ has a 
flat envelope, then @ M~ ---> @ F~ is a flat envelope. 

PROOF. Assume @M~-->F is a flat envelope and choose the obvious 

diagrams. 

COROLLARY 3. For a left perfect ring R, if Pi --> M~ for each i E I are projective 

covers of left R-modules, then @ Pi-->@ M~ is a projective cover. 

PROOF. Similar to that for Corollary 2. 

REMARK 1. If we apply this to a countable sum of copies of the projective 

cover R ----~R/J where J is the Jacobson radical of R we get that @ R  --->@R/J 
(countable sum) is a projective cover. If rl, r2,"" is a sequence of elements of J, 

then use Proposition 4.1 letting k, = n for all n and letting f. : R - - * R  be 

multiplication by r,. Then the condition fm . . . . .  f l (x)  = 0  for x = 1 E R gives 

rm "-" rl = 0. Thus J is right T-nilpotent. 

REMARK 2. If M C E is an injective envelope of M over the commutative 

noetherian ring R and rM = 0 for some r E R then using a similar argument but 

letting f,  : E ---> E be multiplication by r for each n we get that for each x E E, 

r"x = 0 for some n -> 1. If I C R is an ideal and I M  = 0, it is easy to deduce that 

I"x = 0  for some n = 1. 

5. Flat preenvelopes 

Flat envelopes don' t  always exist, nor do flat preenvelopes. To find an 

example of a module not having a flat envelope we use 
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LEMMA 5.1. If M--* F is a fiat envelope and M is finitely presented, then F is 

finitely generated and projective. 

PROOF. Since F is flat and M finitely presented, the map M ~ F can be 

factored through a finitely generated projective P. If M--e, P---~F is such a 

factorization then complete 

M ) F  \ .  
P 

The composition F ~ P ~ F must be an isomorphism, so the result follows. 

COROLLARY. If  R is a domain, M--~ F is as above, and if the sum of countably 

many copies of M has a flat envelope, then the rank of M equals the rank ofF. 

PROOF. If rank M < rank F, then f / ~ ( M )  has a rank 1 torsion free quotient 

say FI~(M)IF' lr~(M) -~ F/F'.  If x ~ F, x r  O, there is an injection FIF'---~ Rx. If 

x E F, x ff F ' ,  let f : F --~ F be the composition F--~ F/F '  --~ Rx  --~ F, so that 

f ( x )  = rx with rE 0 and f (4)(M))= 0. By Proposition 4.2 with each fm= f we 

should get f . . . . .  f ( x ) = 0  where f is repeated some m times. This means 

rmx = 0 which is impossible. 

If R is a local domain and I C R a finitely presented ideal, then it is an easy 

argument to show that I has a flat envelope of the same rank if and only if there 

is a smallest principal ideal (r) containing I with the property that I- lr  C R. In 

this case I---, (r) is the flat envelope. An example is I --- (x, y) C k [[x, y ]] with k a 

field. 

PRoPosmoN 5.1. For a ring R, every left R-module has a flat preenvelope if 

and only if R is coherent. 

PROOF. For the "only if" let (E),  i E I be a family of flat left R-modules. If 

11 F~ has a flat enevelope, then an argument dual to that for Proposition 2.1 

shows that I1 F~ is flat. 

Conversely, if R is any ring and 3c~ is an infinite cardinal, there is an infinite 

cardinal 2/'8 such that if S is a submodule of a flat module F with Card(S) =< ag~, 

there is a pure, hence flat, submodule G of F with S C G and Card(G) ~ Ace. 

This observation means that if M is any left R-module with Card(M) =< .Y~, any 

homomorphism M ~ F with F flat can be "cut down" to a homomorphism 

M---* G, G C F, Card(G)=< N~, G flat, which agrees with the original. Setting 

two such homomorphisms M--* (3, M - *  G '  equivalent if 
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G 
J 

M 

G'  

can be completed by an isomorphism, and letting X be a set of representatives of 

such M---> G, M---* II G will be a flat preenvelope if R is right coherent, since 

then I1 G is fiat. 

6. Flat envelopes 

THEOREM 6.1. (i) For a domain R the [ollowing are equivalent: 

(a) every R-module has a flat envelope, 
(b) the projective limit o[ any projective system o[ flat modules is flat. 
(ii) Conditions (a), (b) above imply 
(c) the weak global dimension o[ R is less than or equal to 2. 

(iii) If  R is noetherian and local then (a), (b) are equivalent to (c). 

REMARK. (a), (b) and (c) fail to be equivalent for an arbitrary ring, with Z/(4) 

an easy 'counterexample (injective modules are flat so (a) holds but (c) fails to 

hold). (b) and (c) are shown to be equivalent in the context of functors in Oberst 

and R6hrl [6]. 

PROOF. (a) ~ (b). Using Proposition 5.1 we get that R is coherent, so the 
product of fiat modules is fiat. To get (b) it suffices to show that the intersection 

of a collection of fiat submodules of a fiat module is fiat. But note that if we have 
an inductive limit li_.m Mj of finitely presented modules and if M~ ---> F, is a flat 

envelope for each i, then by the Corollary to Lemma 5.1, the rank of M~ is the 
rank of E .  Hence for any flat (hence torsion free) module F 

M, ,F,  

F 
can be completed uniquely. This implies that we can form lira E and in fact that 

li._.m M~--~ li__m E is a fiat envelope with the additional property that 

lim M~ ~ lim F~ 

F 
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can be completed uniquely for any flat module F. For since if K is the field of 

fractions of R, U | M~ = li_m(K| M~)---li__m(K| F~)-- K| 

Since R is a coherent domain, every submodule S of a flat module F is the 

directed union of finitely generated, hence finitely presented, submodules. This 

means that the flat envelope of S, say S ~ G will have the unique mapping 

property above. Now suppose S = f')F~ where (F~) is some collection of flat 

submodules of F. Completing 

S ~G 

\ 
by a unique injection for each j, we see that the image of G in any Fj is in fact in 

N F~ and so S is the image of G and so is flat. 

(b) ~ (a). The argument is dual to the proof of the "if" part of Theorem 2.1 

with the exception of Lemma 2.2. In this lemma the fact that if a map 

l imE.- -*M is such that E. ~ M and E~ ~ E,§ have the same kernels then 

lim En--~M is an injection. For modules the dual fails. We can have a 

non-surjective map M - ~  lira En with M -* E. a surjection for each n. Hence our 

argument must be a little more subtle. The argument and result may have 

independent interest and applications to other situations. 

PROPOSITION 6.1. If R is right coherent and any projective limit of fiat left 
R-modules is flat then every module has a flat envelope. 

PROOF. By Proposition 5.1 we know every left R-module has a flat preen- 

velope. By the argument dual to that of Lemma 2.1, we know that if M--* F is a 

flat preenvelope, that there exists a diagram 

G / /  
M ~F 

with M--* G a flat preenvelope such that if M ~ H is any other fiat preenvelope 

and 

/ ;  
M ~G 

F 
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is commutative, then im(/o g) = im(f) (so in this case the image of f is minimal). 

We now try to find a fiat preenvelope M ~ F such that if M--~ K is any other 

preenvelope and we complete 

K / .  
M ~F 

we have K ~ F is a surjection. If this is not the case, letting a be an infinite 

ordinal we construct a projective system 

i 

M ,F0 

for /3  < a where for each/3  + 1 < a we suppose that the image of F0§ ~ F,  is 

minimal in the sense above. Then for each/3 + 1 < a let U~ C F 0 be this image. 

Let  M---~ F be any fiat preenvelope of M. Then complete 

F / .  
M , li_m F~ 

The map F-~Fo can be factored F-*Uo-oFa when / 3 + 1 < a .  By our 

hypothesis, F--~ U0 is a surjection. Now if /3 < v < v + 1 < a consider 

F 
/ \  

U~ ,u0 

Then U~--~ Uo is a surjection. If it is never an isomorphism, then 

ker(F--~ U~)~ker(F--~ U~). This implies Card(F)_-__Card(a) for any such a 

which is impossible. Hence U~ --~ U~ is an isomorphism for some such/3 < u < 

u + 1 _-__ a. This map is a composition U~ --~ F~§ Us so that U~ = U~ is a 

retract of F0+~ and so is flat. M--~ U~ is then clearly a fiat preenvelope. If 

S 
M ~U~ 
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is commutative with M---> G a fiat preenvelope then consider 

G 

By our hypothesis on Fs+t -~ Fs, the image of G --~ F is Us. Since U~ --~ Us is an 

isomorphism this means G--~ U~ is a surjection and we have the desired flat 

preenvelopel 

Now apply the argument dual to that for Lemma 2.3 and the result follows. 

Suppose now that (a) and (b) hold. Let S C F be a submodule of a flat module 

and let 

O--> T-'-> G --'> S "-> O 

be exact with G flat. We want to show that T is flat. Assuming T C G, we see by 

the proof (a) ~ (b) that there is a flat submodule H C G with T C H so that 

T ~ H is a flat envelope, and that K | T---> K | H is an isomorphism. But then 

H / T  is torsion and is isomorphic to a submodule of S which is torsion free. 

Hence T = H and T is fiat. 

If R is noetherian, then the weak global dimension is the global dimension. So 

it remains to show that (a) holds if the global dimension is at most 2. But (a) will 

hold if every finitely generated module has a flat envelope of the same rank. Let 

S be finitely generated. We can suppose that S is torsion free and that S C F 

where F is a finitely generated free module of the same rank as S. We first show 

that there is a projective submodule P of F containing S and contained in any 

other such submodule. Note that if S CP~,P2 with P~,P2CF projective sub- 

modules then S C P1 A P2 C F and P, tq P2 is projective since the global dimen- 

sion of R is at most 2. We argue then that a decreasing sequence Pt D P2 D . . .  of 

projective submodules of F containing S terminates. R is local so each P, is 

free. 

Given P D P'  with P, P '  finitely generated free modules, choosing bases, let A 

be the matrix of the inclusion P ' C  P. Then A is uniquely determined up to 

multiplication by a unit, is non-zero, and is a unit if and only if P = P'. If 

P C P'C P" with P" also finitely generated and free and if B is the matrix for 

P '  C P" then B A  can be used for P C P". In the situation above, let An be the 
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matrix for Pn§ C P~. Since S has the same rank as F, we can find P C S free of the 

rank of S. If C is the matrix for P C P~ then (det C) C (det A 1) . . . . .  (det A . )  for 

every n. But a regular local ring is a UFD and so the only way the above is 

possible is for det A.  to be a unit for all n => m for some m. This means 

P,, = P,,§ . . . .  . Hence we have the required submodule P. To show S C P is a 

flat envelope, suppose we have a diagram 

S ~P \; 
to be completed with F flat. By attaching a direct summand to F we can assume 

S ~ F is an injection and so that S C F. But F ~ K | F is an injection and K | F 

is injective, so we can complete 

S ~P 

K |  

The map P - - . K |  is an injection so enlarging F C K |  to some free 

submodule F', F C F' C K | F we can assume P and F both are submodules of 

F' .  Then S C P Cl F and P Cl F is projective by construction of P, P Cl F = P or 

P C E This means 

\ .  
F 

can be completed. 

I~MAm~. It would be interesting to have a characterization of rings all of 

whose left R-modules have flat envelopes. All von-Neumann regular and all 

quasi-Frobenius rings are such rings. 

7. A categorical version 

Since the proof of the "only if" part of Theorem 2.1 is categorical it seems 

worthwhile stating the necessary categorical assumptions. For  the most general- 

ity, the proof of Lemma 2.2 should be replaced by the argument dual to that in 

the proof of Proposition 6.1. Thus we avoid unnecessary assumptions on 

inductive limits. 
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0//will be a Grothendieck universe with N E q/. Let ~ be a category which is 

locally small and cosmall relative to q/. Suppose very homomorphism A---> B 

has a natural decomposition A ~ Z ~ B with A---> Z an epimorphism and 

Z--->B a monomorphism where natural means that if A ' - o Z ' - - - > B '  is such a 

decomposition for morphism A'---> B'  then any commutative diagram 

A ~Z >B 

A'  ~ Z '  ~ B'  

can be completed to a commutative diagram. Also suppose that every bimor- 

phism is an isomorphism. Then if ~: is any class of objects of ~ we have 

Theorem. If an object A of qg has an ~-precover and if ~ is closed under 

well-ordered inductive limits (i.e. the limit exists in ~, and is an object in ~:) then 

A has a cover. 

We note that there is a dual theorem for envelopes. Possible applications 

might be in the category of topological spaces. For example, in the category of 

compact topological spaces the class of connected spaces is closed under 

projective limits. This implies that every compact space having a connected 

preenvelope has an envelope. But using the long lines (for arbitrary ordinals) 

and a cardinality argument, a two point space can be shown not to have a 

connected preenvelope. Then it quickly follows that only connected compact 

spaces have connected envelopes. This is in marked contrast to the case of 

compact abelian groups where every such group has a connected envelope [3]. 

If for compact spaces we consider those X which can be written as the 

projective limits of AR's, X need not be an AR but does have a sort of injective 

property. If such an X is a subspace of Z and X---> Y is continuous where Y is 

an ANR, then there is a continuous extension Z ---> Y. It would be interesting to 

know if envelopes exist in this case. 

8. Injective resolvents 

An injective resolution of a left R-module M is an exact sequence 

0--* M--* E~ El--* - ' '  with the E n's injective. Two such resolutions give rise 

to homotopically isomorphic complexes. If we attempt to find an exact sequence 

�9 . . - - *E~- -~Eo- -*M- -~O with the En's injective we fail. In general there is no 

surjection E--~ M with E injective. However, if R is left noetherian, we can 

construct such a complex with the requirement that E0--* M, E~--~ ker(Eo--~ M) 

and E.+~---> ker(E. ---> En-~) for n => 1 are injective precovers. This means that if 
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E is injective and we apply Horn(E,__) to the complex, we get an exact 

sequence. In this section we note some of the easy consequences of the above. 

We note that if we think of our category of left R-modules as a category with 

models, in this case the injective modules, the method of a cyclic model used in 

algebraic topology is applicable. 

DEFINITION. The complex . . . - ~ E I - ~ E o - ~ M - ~ O  as above is called an 

injective resolvent of M. 

Standard arguments give immediately that two injective resolvents give 

homotopically isomorphic complexes. If the maps E,+l--~ker(E,-~E,_l)  are 

furthermore injective covers, then we call our sequence a minimal injective 

resolvent. The minimal injective resolvent is unique up to isomorphism, and 

finite sums of minimal resolvents are minimal resolvents. For n > 1, the kernel of 

E , -~E,_~ must be an essential submodule. Otherwise a non-zero injective 

submodule of E,  would be mapped injectively into E,_~ so E,_~--~E,_2 (or 

E0---~ M if n = 1) would have a non-zero injective module in its kernel. We have 

PROPOSITION 8.1. If R is left noetherian the least n such that for the minimal 

resolvent of each left R-module M, E,, = 0 for m > n is two less than the left global 
dimension of R, or is 0 if the global dimension is 1 or O. 

PROOF. The argument proceeds by noting that we can use injective resol- 

vents of M to get derived functors of Horn(N, M). Denote the nth  derived 

functor as E~tn(N,M). The n described above is the least n such that 

E~t m (M, N) = 0 for all N and M and all m > n. If 0--* N ~ G o ~ G ~ - * . .  �9 is an 

injective resolution of N, then by constructing and choosing the obvious 

diagram, it is seen that E~t(N, M) can be computed using either the injective 

resolvent of M or the injective resolution of N. If the resolution of N is minimal 

then we see that E~t" (N, G"/im(Gn-'--~ G2)) = 0 implies G n§ = 0. Conversely 

if G n§ =0 ,  so that 0---~ N--* Go--* . .  .--~, G~+~---~0 is our resolution then since 

0--~Hom(G n§ M)--* Hom(G",  M)--~ Hom(G "-~, M) is exact we get 

E~t"(N, M) = E~t"+~(N, M) = 0. This completes the proof. 

As an example of a consequence of the above, let R = k[[x, y]] with K a field. 

If E - - * M  is an injective cover of the R-module M with kernel S, then 

Hom(G, S ) =  0 for any injective module G. Otherwise the minimal injective 

resolvent of M would have a non-zero term of degree I. 

If R is commutative and noetherian, the En's in a minimal resolvent of M can 

be described by finding, for each prime ideal P C R, how many components of En 

are isomorphic to E ( R / P )  (the injective hull of R/P)  in a decomposition of E 



Vol. 39, 1981 INJECTIVE AND FLAT COVERS 209 

into indecomposable injective modules. In Bass [2], using a minimal injective 

resolution instead of a resolvent, the number described is called/~. (P, M).  So for 

a resolvent the number will be denoted v. (P, M). In a subsequent publication it 

will be shown that, analogous to Bass' result, v . ( P , M ) = d i m E ~ t " ( R / P , M ) p  

where the dimension is over the field of fractions of R / P .  The proof is somewhat 

different, largely because unlike minimal injective resolutions, minimal injective 

resolvents aren' t  preserved by localizations. 

E i t ( N , M )  has long exact sequences for short exact sequences 

0--~ N'--> N--~ N" ~ 0 and for sequences 0 ~ M ' - ~  M--~ M "  ~ 0 which may not 

be exact, but which become exact when we apply Horn(E, _ )  for any injective 

module E. 
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